IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Potential symmetries and direct reduction methods of order two

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 2211
(http://iopscience.iop.org/0305-4470/30/6/039)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:14

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 2211-2217. Printed in the UK PIl: S0305-4470(97)76143-2

Potential symmetries and direct reduction methods of
order two

Giuseppe Saccomaridi
Dipartimento Memomat, Via A Scarpa 16, Univesgslta Sapienza, 00161 Roma, Italy

Received 5 July 1996, in final form 30 September 1996

Abstract. For partial differential equations written in conservative form a remarkable link
between potential symmetries and direct reduction methods of order two is enlightened.

1. Introduction

Let us consider a partial differential equation of the form
A(x,t,M,MX,M[,Mxx,uxt,un)=0 (1)

where x and ¢ are independent variables amd= f(x,t) the dependent variable. We
say that (1) admits direct reduction of ordem if there exists functiong = ¢(x, ¢) and
u=U(,t, wi(z),...,w,(z)) such that

u=Ux,t,wi(C(x, 1), ..., w,({(x,1))) 2

reduces (1) to a coupled systemsoflistinct differential equations fow,(z), ..., wa(z).

If n =1 then from (2) we recover the Clarkson—-Kruskal(-Lou) ansatz [1, 2], which has
been shown by Pucci [3] to be a particular case of the non-classical method of Bluman—Cole
[4]. For nice overviews on the subject of non-classical weak (or conditional) symmetries
and direct methods we refer to [5] and [6].

Recently, Olver [7] has shown that there is a one-to-one correspondence between direct
reduction ansatz (2) andh-order differential constraints of the form

V() = O(x, t,u, o), ..., " ) )
where
v=1(x,)d +&(x,1)0, 4)

is a vector fieldp?(u) = v(v(u)) and so on.

In [7] it is shown that the ansatz (2) always reduces (1) to a coupled systerdistinct
ordinary differential equations fav1(z), . .., w,(z) if and only if the overdetermined system
of partial differential equations defined by (1) and (3) is compatible.

Since in the case = 2 we have

V2(u) = TPy + 2tE Uy + 2y + (T + ETOu, + (TE + EEDuU,
=P, t,u, tuy + Euy)

©)
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then we can always consider (2) as an invariant solution under the action of a non-classical
generalized symmetry [8] for which (5) is the infinitesimal generator in evolutionary form
[9].

The aim of this paper is to give another (and, we think, more useful) group theoretical
interpretation of direct reductions of order two for a particular class of partial differential
equations (1).

Blumanet al [10] have introduced the concept of potential symmetry for any differential
equation which can be written as a conservation law. In the case considered here, this means
that (1) can be written as

DxF(x,t,u,ux,ut)—D,G(x,t,u,ux,ut)=0 (6)

where D. and O are the total derivative operators. Introducing an auxiliary potential
variablev = v(x, r) it is possible to form the potential systei= 0,

UI_F(xat9u1uX7ul):o (7)

vy —G(x,t,u,uy,u;) =0

which is obviously equivalent to (6).
To compute thelassical point symmetries of (7), [9, 11], we introduce the infinitesimal
generator

X =&, t,u,v)0 +t(x,t,u, V)0 +n(x,t,u,v)d, +¢(x,1,u,v)d,
and its first-order prolongation

X=X 0 O+ 0O, + B0, + 470, (8)
where

n* =D,n—u,D& —uD,t n' =D —u,D& —u;D;t

¢* =D,¢p —v,D & —v,D,7T ¢' =D, —v,.D& — v,D;t. )

Considering the relation
x'Sls=0 =0

we obtain the defining equations of the classical point symmetries admitted by (7). Any
admitted symmetry with infinitesimal generatgrwhere&, © or n depend orw is called
potential symmetry of (6); potential symmetries are non-local symmetries.

Non-classical potential symmetries, [12], are simply obtained requiring that

x'Sly=0=0

where S’ = 0 is the overdetermined system obtained appendin§ te O the invariant
surface conditions

n—E&u, —tu, =0 (108)
¢ —Ev, — v, = 0. (10b)

Since, in some cases, there are many ways to rewrite a given differential equation as
a conservation law, potential symmetries depend on the chosen conservative form [13, 14].
For this reason, in general, it is very hard to characterize all the potential symmetry of a
given equation.
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In any case, [13], the similarity solutions associated with potential symmetries (classical
or non-classical) are of the kind

u=Ux,t,z,wi(z), wa(2)) (11a)
v=V(x, 1z, wi(z), wa(2)) (11b)
G(x,t,z, wi(z), w2(z)) =0 (11

where the last equation defines implicitly the similarity variabbes a function ofx, ¢). Itis
possible to show [13], that (&) introduced directly in equation (6) and not in system (7),
as is usually done to find the similarity solutions, allows one to obtain a wider class of
solutions of the original equation than the invariant one. Moreover, this wider class of
solutions also satisfies a second-order equation

06, £, U, Uy Upy U, Ugy, Uy) = O (12)

obtained by eliminating from the corresponding invariant surface conditions (10). Indeed
if we take the total derivatives of (&) with respect taxr and: we obtain

_ My + ety — Ex +Eu)uy — (o + Tuu Uy — Ellyy — Thyy)
Ny — 'i:uux — Tyl

Uy

and
v, — M +nuuy — G +Euu)uy — (v + Tuu)uy — Euy — Tuy)
' Ny — &ty — Tty

(we remember tha§? + 72 + n2 # 0). Introducing these expressions into L@ is then
possible to obtain a relatioH (x, ¢, v, u, u,, u;, .y, Uy, u,;) = 0 which coupled with (18)

gives (12). This means, as already remarked in [13], that invariant solutions under the
action of potential symmetries are also invariant solutions under non-classical generalized
symmetries.

These facts seem to stress a deep link between potential symmetries and second-order
differential constraints. Indeed, using the methods presented in [15] in this paper we show
that for a partial differential equation (6) any compatible differential constraint of second
order corresponds to a non-classical potential symmetry.

This result implies that the non-classical potential symmetries corresponding to a
conservative form are all the possible potential symmetries of the given equation, so that all
the problems relating to the choice of the conservative form can be bypassed. Moreover,
also if at first sight potential symmetries can seem very special this is not the case since
a large class of solutions can be obtained as invariant solutions under the action of these
symmetries.

2. Potential symmetries and direct methods

Let us consider a second-order differential constraint
v2(u) = O (x, t, u, v(n)) (13)

admitted by equation (6) and in correspondence with

v =E(x,1)d, + 7(x, 1)d,. (14)
The fact that (13) is admitted by (6) means that the overdetermined systeoamposed
by (6) and (13) is compatible, so therefore complete, and then any differential consequence
of ¥ is also algebraic consequence of this system.
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Now let us consider the systel equivalent tox composed by the potential system (7)
and the invariant surface conditions
éux +Tu, =v

gvx + Ty = ¢
where& and7 are the same functions entering in the vector field (14)@rd ® (x, 1, u, v)
(see equation (5)).
Our claim is that
X =&(x, )05 + T(x, )0, + vd, + DI,

is a non-classical potential symmetry of (6). To this end, having v, it is sufficient to
show thaty is a non-classical point symmetry of the potential system, i.e. that

X'Sls =0 (16)

but sinceX is complete (because so 1) this last condition is true if and only iflS is a
differential consequence ai. )
All the differential consequences of the first order®fmust be combinations of

(15)

v, =D, F Uy =D, F a7
vy = D,G Ve = DG (18)
N =&y + Tup n' = Euy + Tuy (19)
" = Evy, + T ¢ = Evy + TUy. (20a, b)
If we solve (19) foru,, andu,,, we obtain
Upy = AL Uy = 717[ = St (21a,b)
& T

so then substituting (21) and (18) into g0we have
¢ =E(Gy + Guuy + Gy up) + G, (" — tuyy)

+7(Gt + Guty + Gy ) + Gu, (' — Euyy) (22)
and substituting (21) and (17) in (B0we have

¢t = g(Fx + Fuux + Fu,utx) + Fux (ﬂx - Tutx)
+T(Ft+Fttut+Fuxutx)+Et,(nt _éutx)~ (23)

The relations (22) and (23) are exact}S when we consider the syste®, and since
these relations are obtained as linear combinations of the differential consequedces of
have shown thaf is a potential symmetry of (6).

Now what about thevice vers® When given a potential symmetry is it possible to find
a corresponding differential constraint of second order?

From the special form ofy it seems that only very particular potential symmetries
and differential constraints of second order are in correspondence. Indeed not only, as for
the CK-direct method, do we have that our potential symmetries must have (x, 1),

T = t(x,t), but the generator corresponding #omust be very special since from the
previous result it seems that this infinitesimal generator must be exactlyv. Given

a potential symmetry wheré = &(x,t), T = t(x,t), but n = n(x,t,u,v) since the
corresponding similarity solution is always of the kind &l,1and z is given explicitly,

using Olver’s results it is possible to find a differential second-order constraint generated
by a vector field (4) in correspondence with this solution. Then, if we apply our result,



Potential symmetries and direct reduction methods of order two 2215

it is always possible to find an equivalent (in the sense with the same invariant solutions)
non-classical potential symmetry with= v, the samé and<t, but differenty. In practice
this can be done by using the method of characteristics backwards or as we illustrate in the
following example.

Let us consider the Fokker—Planck equation

Uy = (xux)x + Uyy (24)
and the corresponding potential system
Vy=1u V= Uy + xu. (25)

Potential symmetries for these kind of equations have been investigated in [16] and [13]
where it has been shown that

E=—x T=-1 n=u(x?+2) +2xv ¢ =v(x>+1) (26)
is a (classical) potential symmetry for (24). The characteristic system related to the invariant
surface conditions is

Xy +u; +ux’>+2vx+2u=0
(27)
xvy + v +v(x2+1) =0.

The corresponding similarity reduction, for= u(x, t), is obtained as usual as
u = (ha(2)x "% = h1(2)) eXp(—x?/2) (28)

where the similarity variable is(x, ) = x~“*exp(t). The vector field in (26) is not as we
require here since # v. Using the method described in the introduction it is easy to show
that the corresponding equation (12) for this potential symmetry is

n* =y + 2xuy + X2 + 2x% 4+ 2u, + (233 + 30)u, + (x4 + Pu = 0.

Now by settingé = —x, T = —1 andn = v the corresponding invariant surface condition
is

— XUy — Uy =V (29)
and by total derivation of this relation it is possible to obtain
Uy + 2xUyy + XUy + XUy = —XV, — ;.

By introducing the above expression and (29)7ifh with some simple algebra we
recognize that

¢ = 2x°+2v — (x* + 4xP)u.

In such a way we have found the non-classical symmetry we were searching for.

In summary, direct reduction methods of order two are a particular case of non-
classical potential symmetries and there is an exact equivalence between this direct reduction
method and potential symmetries with infinitesimal generators which does not depend on
the unknown functions.

Remark 1 The same arguments of the last section of [17] allows one here to enlarge the
point of view considering the case where the similarity variaple given implicitly by a
relation of the kind (1&), and to show a perfect equivalence between non-classical potential
symmetries and direct reduction methods of order two for partial differential equations
written in conservative form.
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Remark 2 From our results we deduce also that to compute non-classical potential
symmetries of a given differential equation, not only is it sufficient to take only a
conservative form, but it is also sufficient to search for generators in the formn 1,
E=&0x, tbu,v),n=v,¢=0¢x,t,u,v)ort=0,=1,n=v,¢ =¢(,t,u,v). The
normalizationt = 1 is the usual one suggested by the presence of the invariant surface
conditions. The generality of the second normalizatjca v we have already discussed, but
we remark again that it arises from the arbitrariness we have in the choice of the auxiliary
potential variable [13, 16].

3. Concluding remarks

The main goal of this short paper was to stress the link between potential symmetries and
reduction of order two for partial differential equations in two variables of second order.
We have chosen this framework to present our results for the sake of simplicity and to
allow an immediate comparison with the results previously presented in [7], but using the
methods of [15] it is simple to generalize everything to partial differential equations in more
variables and of any order. The ideas contained in [15] (we note that this paper has been
previously a Mathematical Science Institute of the Cornell University Preprint in 1988) has
been successfully used in several papers to include direct methods into a group theoretical
framework [3, 18, 19].

We think the results here given are interesting for different reasons. Indeed, as we now
also have a group theoretical framework for direct reduction methods of order two. The link
between this direct method and potential symmetries allows one to show that the definition
of non-classical potential symmetry is independent of the conservative form chosen to write
the potential system equivalent to the given equation, and for their computation we can
introduce a new normalization. As a last point we also have to note that despite their
simplicity potential symmetries are related to a wide class of similarity reductions and,
since equations of physics are often written in a conservative form (for example the balance
laws of continuum mechanics), they are the natural way to study invariance.
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